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Abstract

This thesis describes the design and implementation of a persistent dis-
tributed object oriented system and programming environment. It is
built on an existing non-distributed server, Dworkin’s Generic Driver
(DGD). Focus is placed on achieving high efficiency, while preserving
single-threaded semantics, allowing the programmer to write code as if
there was only a single server. The goal is to design a server solution
capable of supporting large persistent worlds, such as those found in
massively multiplayer online games (MMOG). Results from testing the
implementation are presented and evaluated.
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Chapter 1

Introduction

This paper discusses aspects of creating a distributed system supporting
a persistent world, more specifically, one built upon Dworkin’s Generic
Driver (DGD [4]). Persistent worlds are introduced in the following sec-
tion, while the relevant details of DGD are investigated in section 1.5.
The computers supporting the world in the form of servers will be re-
ferred to as server nodes, or simply nodes.

1.1 Background

“Persistent world”; the type of world this refers to is a virtual reality,
shared by many users simultaneously. These users may experience it,
change it and interact with each other. Persistence here means that the
objects that make up this world are stored in a database. So the world
stays the same after a shutdown and restart of the server, including a
reboot of the host computer. Technically, this “world” is just a database.
What makes it a world is the user’s perception of it. This does not imply
any specific way of presenting the world to the users, which might be
textual, graphical or otherwise.

These types of system have been used extensively for text games,
but also as teaching (“virtual university”) and collaboration tools. A
new class of games has also appeared and become quite popular, of-
ten referred to as MMORPG – massively multiplayer online roleplaying
game. “Massively multiplayer” denoting the fact that there is a large
number of users participating simultaneously.

As persistent worlds grow beyond a certain size and get more com-
plex, they cannot run on a single server. This is already true of the
MMORPGs, which are distributed in varying ways. Often, though, this
is combined with making several completely independent copies of the
world. The downside is obvious; two users can never interact unless
they are in the same world copy. Also, the transition in the world be-
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tween two server nodes is seldom seamless.
For large persistent worlds, distribution is not only useful, but an ab-

solute requirement. That makes it very interesting to investigate ways
that such distribution can be done. DGD provides a good software foun-
dation upon which distributed worlds can be created and run. However,
it was made to run on a single host computer.

1.2 Objectives

The main objective of this thesis is to develop a system on top of DGD
for supporting distributed persistent worlds. A simple proof–of–concept
implementation will also be created, and some aspects of its behavior
observed.

A persistent world is a highly interactive medium. In this context
response time is very important. Response to user input should, when-
ever possible, come fast enough to be perceived as immediate. Greater
demands for speed are placed upon a distributed system of this kind
than may be the case for many other types of distributed systems. For
this reason, speed and efficiency are aspects that will be focused on.

The goal is to present a layer to the programmer, where well behaved
objects will function properly in a distributed environment. This layer
will not be invisible, but it should not without necessity get in the way.
Making it possible to program the system in a fashion as close as possi-
ble to traditional DGD programming would be beneficial. An important
plus here is if the single-threaded semantics of DGD (see section 1.5.4)
can be kept. Doing so would allow developers to program the system
without worrying about deadlocks or any other problems related to the
coordination of multiple threads.

In summary, the solution should have the following qualities:

• One persistent world on multiple server nodes.

• Persistent as a whole.

• Stay close to traditional DGD programming.

• Single-threaded semantics.

• Efficient enough for a highly interactive system.

The purpose of the proof–of–concept implementation is to try the so-
lutions in practice and see whether they have the qualities listed above.
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1.3 Scope and limitations

First of all, DGD being the basis for building upon will affect choices on
the way towards a solution. Building on a different basis might make
other solutions more suitable. Another approach might have been mod-
ifying DGD itself, rather than building on top of it.

The server nodes are assumed to be interconnected through a local
area network (LAN) or a similar configuration. Connectivity is assumed
to have low latency and high bandwidth.

Node failures and failures in the network connecting the nodes will
both be considered fatal, causing all remaining nodes to shut down.

Security aspects will not be examined. Total trust between the ser-
ver nodes is assumed.

DGD is programmable in nature. It may compile new code or update
old code while the system is running. It will be assumed that a source
code repository is kept on a fileserver that all server nodes have access
to through a networked filesystem. An alternative, which will not be
examined here, would be to transfer an object’s code in addition to its
internal state when it is moved from one node to another. Perhaps send-
ing code only when the same version of that code is not already present
on the destination node.

It may be possible to implement distribution in DGD in a way trans-
parent to the programmer. Even if it is possible to do this in an efficient
way, it is beyond the scope of this project and will not be attempted
here. It should be kept in mind, though, that a completely transpar-
ent system may not always be a good thing. Transparency can lead to
inefficient code, because the consequences of a piece of code are less vis-
ible to the programmer. This makes it easy to treat local and remote
objects the same and forget about the very different cost involved with
accessing them.

The persistent world can be made up of room objects. Connections
between these room objects allow users to travel from one place to an-
other. The proof–of–concept implementation will only have a few rooms
and other objects which can be manipulated in simple ways. It will be
tested by a very limited number of users. Observations from such a
system are bound to be of limited use.

A system such as this has little meaning if one server node ends up
handling everything. Therefore a scheme for dividing work is necessary.
This is not the main focus here, however, and advanced load balancing
is not attempted.
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1.4 Organization of the paper

The following chapters are organized as follows. Chapter 2 examines
relevant prior work, while chapter 3 contains the analysis and design
decisions. The most relevant parts of the implementation are covered by
chapter 4. Chapter 5 presents and evaluates testing results and other
observations. Finally, chapter 6 looks at possible directions for future
work.

1.5 DGD: Dworkin’s Generic Driver

Dworkin’s Generic Driver (DGD) is a multi-user, programmable server
for persistent worlds. DGD supports a persistent world on a single host.

DGD is similar to Java in that its compiler generates bytecode which
is later run by an interpreter as part of a virtual machine. However
DGD’s compiler is built into the server; new objects are compiled and
old ones upgraded with new code while the server is running. DGD uses
a language called LPC which has a syntax similar to C. It is object ori-
ented and has multiple inheritance. The LPC language was designed by
Lars Pensjö. Its first implementation was in Lars Pensjö’s own LPmud
driver [9]. DGD uses a somewhat modified dialect of LPC.

Arrays and mappings (associative arrays) are automatically garbage
collected when no longer referenced. The same is not true of objects
however, which have to be explicitly destructed. Existing references
to an object automatically become “nil” (a special null value) when the
object they reference is destructed.

Persistence is provided through a feature called state dumps, which
is explained in detail in section 1.5.2.

1.5.1 Communication

DGD uses TCP/IP for communication. For security reasons it does not
in itself have the capability of opening outbound connections. It opens
two TCP ports. One to receive telnet connections and one to receive
binary (not interpreted by DGD itself) TCP connections.

There is an independently developed networking package for DGD.
It extends DGD’s networking functionality, allowing it to open any num-
ber of ports, open outbound connections and receive and send UDP pack-
ets.

In a distributed system, nodes need to open outbound connections
to other nodes, therefore the networking package is a natural choice.
However, the package is not always available for the latest version of
DGD. For this project a small program was written instead. It connects
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to DGD’s binary port, allowing DGD to make outbound connections, and
multiplexes those connections over its single connection to DGD.

1.5.2 Persistence

As mentioned earlier, persistence is provided by DGD through a feature
called state dumps. A state dump is a file containing (almost) the entire
internal state of the server. After the creation of a state dump, the
server may be shut down and later restarted using the state dump file.
All objects and callouts (timers) are then restored.

A state dump contains all objects (their bytecode and internal state)
and all pending callouts. Network connections are not stored however,
and must be established anew when the system later comes up again.

1.5.3 Thread Model

Threads in DGD always execute in sequence and do not overlap each
other. The thread model is event-driven. Threads are expected to run
only briefly and cannot wait for events to occur. Instead, when an event
occurs, a new thread is started to handle it. The thread then terminates
when the event has been handled.

If a thread did not terminate it would hang the system forever. To en-
sure this does not happen DGD has a programming language construct
to place resource limits on a thread. The resources are CPU time, mea-
sured by the interpreter in “ticks”, and stackspace. If a thread runs out
of either resource by running too long or nesting function calls deeper
than allowed an error results which may terminate the thread.

Threads are invoked by the following events in DGD:

• When the system starts up, either for the first time or when restor-
ing from a state dump.

• When a connection is established or closed.

• When the last part of buffered output has been sent to the net-
work.

• When the server process receives a kill signal. This gives the sys-
tem a chance to save its data before shutting down.

• A timer expired (dubbed a “callout” in DGD, a term originally de-
rived from the BSD Unix kernel sourcecode). A callout may have
no delay at all, in which case this thread is invoked as soon as
possible after the current thread has terminated.
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State dumps are performed immediately after the thread that re-
quested a state dump has terminated and before executing another
thread. Thus, no thread is executing at the point of the state dump.

The same holds for upgrading the code of an existing object (recom-
piling it). The object has the old code until the current thread (which
initiated the recompilation) has terminated. When the next thread is
started, the object will have the new code and behavior.

Errors in DGD are similar to the exceptions of Java or C++, but they
are always of type string. When an error occurs, the current thread of
execution is traced backwards to a point where the error is caught and
execution may resume. If an error is not caught, the thread terminates.

One of DGD’s most interesting features is that a function can be
declared to be atomic. If an error occurs and is not caught during the
execution of an atomic function, all actions performed since execution
entered the atomic function are undone before the error is passed up
from that function. An analogy would be the transactions of database
systems.

1.5.4 Single-threaded semantics

The previous section already mentioned that on a single DGD system
no more than one thread may be running at any given time. The impli-
cations of this deserve a little further examination, though.

Programming a system where you have to deal directly with the is-
sues of multiple threads accessing the same data, usually involves using
some form of locking or other concurrency control. This places an added
burden on the programmer, especially with the possibility of deadlocks.
Programming a system which is single-threaded or which appears that
way to the programmer is much easier and more straightforward.

As an example, imagine a closed door. One user executes a thread
attempting to lock the door. Another user’s thread is attempting to open
the door, at the same time. It seems reasonable that only one of these
threads should be able to execute their user’s command successfully.

In regular DGD programming, the thread opening the door would
first check that the door is unlocked, then execute code that opens the
door. But when transitioning to a system with multiple threads execut-
ing concurrently, the thread locking the door might execute inbetween
the check and the code that opens the door. To the users it would ap-
pear as if the door was first locked, then opened. To avoid this, the
underlying system could handle the issues of concurrency on its own,
preserving single-threaded semantics. Or it could present the program-
mer with thread synchronization primitives. In the latter case it would
be the responsibility of the programmer to make sure only one of these
threads could access the door at a time.
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Chapter 2

Related Work

This chapter reviews prior work that is relevant to this paper. Much
research has been done in the field of distributed systems, but only that
which was found most directly useful for this thesis is discussed here.
During the course of this thesis project, one prior project was found that
had many similarities; the DOME project, which is investigated in the
following section.

2.1 DOME

The DOME [10] project’s goal was to make a version of Lars Pensjö’s
LPmud driver capable of parallel / distributed execution, while not re-
quiring programmers to worry about synchronization and deadlocks.
DOME has a strong focus on keeping single-threaded semantics (see
section 1.5.4) while staying efficient.

LPmud is a starting point similar to DGD and the goals are similar
to those of this paper. DOME, however, takes a very different approach
in that the LPmud driver itself is modified on a low level rather than
building on top of it with LPC. It would have made a very interesting
case for comparison of performance and experiences, but unfortunately
the implementation work seems to have been abandoned.

To provide the programmer with conventional single threaded pro-
gramming semantics, DOME handles the problems associated with con-
current access to data transparently. This is done with an optimistic
concurrency control in the form of a lock-less protocol which rolls back
changes as necessary, when multiple threads are in conflict. When two
threads attempt to make changes to the same data, all changes made
by one of the threads are rolled back. That is, the system appears as if
the changes never took place, much like the rollback that takes place in
a conventional database when a transaction is aborted. Afterwards the
thread that was rolled back can attempt to run again.
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The DOME system consists of four software subsystems; commu-
nication, object management, synchronization and execution manage-
ment.

The communication subsystem acts as an interface to the host ma-
chine’s communication system. Output is buffered so that it may be
discarded along with object changes when a thread is rolled back, as
described below.

The object management subsystem handles the global name space.
Objects are named by a tuple containing the ID of the server where the
object was created, and a unique number on that server. The object
management subsystem handles translations between such tuples and
an object’s position in the object table of the server where it currently
resides. A forwarding mechanism is used to handle objects that have
migrated to other servers.

The synchronization subsystem contains the synchronization primi-
tives that are needed by the lock-free protocol.

The concurrent execution of threads is managed by the execution
subsystem. It interfaces with application code and handles requests
for object method access, instantiation and destruction as well as I/O
and other services. Access to remote objects are handled on top of a
traditional remote procedure call system.

When a thread modifies the state of an object, a copy is made first,
and the copy is what is actually modified. At the end of the thread all the
objects it modified are updated to use the new state copies, unless other
threads also modified some of those objects in the meantime. In the
case that an object was modified since its state was copied the thread
is rolled back discarding all the new state copies. The thread is then
started again from the beginning, making new copies of the object states
and attempting the operations again. Using this scheme, the thread
that attempts to commit first will succeed. Parallel threads accessing
the same objects will fail to commit, roll back and be rescheduled —
hopefully to succeed the next time.

When objects on multiple server nodes are affected, a two-phase
commit protocol is used. The node that initiated the thread sends a
message to the involved nodes asking whether the changes to their ob-
jects can be safely accepted. Only after each node has given a positive
answer, will the initiator tell all of them to commit the changes. Again
a strong analogy can be seen in traditional database systems. If one or
more of the nodes give a negative answer, the thread is rolled back and
attempted again, as described in the previous paragraph.
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2.2 Emerald

Emerald [7, 6] is an object-based language and system designed for the
construction of distributed programs. It has fine-grained mobility; not
only processes, but any object including small data objects, are freely
mobile. An object may be attached to another object in which case it will
also be moved whenever that object moves. Emerald was designed with
efficiency in mind and it was intended to run on a local area network
with a modest number of nodes.

2.2.1 Object naming and object references

Objects are given unique network-wide object identifiers (OID). An OID
is 32 bits and consists of an 8-bit node identifier and a 24-bit sequence
number. An object reference is represented as the address of an object
descriptor. Object descriptors are local to each node, so when an object
reference is moved to another node it must be updated to point to the
correct object descriptor on that node. Each node has a hashed access
table mapping OIDs to object descriptors, which makes this translation
simple.

Using a direct address rather than the OID for object references is
done for performance reasons. Looking up entries in the access table
need only be done when an object reference is moved between nodes.
Had the object reference consisted of the OID instead, the access table
would be needed for every invocation, which would imply a performance
penalty.

2.2.2 Execution of threads

In Emerald, process objects make invocations on other objects which
again invoke other objects and so on. Invocations may be local or re-
mote. The arguments are object references, but the referenced objects
may be passed along with a remote invocation. By default, only the
references are sent. The objects are included if the programmer spec-
ified that they should be, or it was determined to be beneficial by the
compiler.

It is often efficient to include the objects referenced by the arguments
of an invocation to a remote node when the invocation message is sent.
In most cases the remote node will subsequently invoke those objects.
This may result in many remote invocations from that node back to the
first node if the objects are not included.

Emerald supports three types of argument passing semantics. Call-
by-remote-reference passes only the references to the remote node. Call-
by-move sends also the objects referenced. Finally, call-by-visit also in-
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cludes the objects, but when the invocation finishes the objects move
back to the initial node automatically. Whether moving an argument
object is worthwhile depends on the size of the object, current and fu-
ture invocations on the object, the number of times the object will be
invoked by this remote invocation and the relative costs of mobility and
local versus remote invocation. It was shown [7] that call-by-move can
greatly improve performance. In some cases the compiler can choose a
good argument passing mode. In other cases the programmer can use
application specific knowledge to choose one.

2.2.3 Locating objects

Emerald uses forwarding addresses to locate objects, as described by
Fowler [5] but with some modifications.

Each object has an object identifier that is unique not only to one
node, but unique to the whole network. The basic principle is that
whenever an object migrates from one node to another it leaves behind
a forwarding address at the node it left. Only the two nodes (source and
destination) involved in the migration update their information on the
object. No message is sent to other nodes. A forwarding address consists
of the tuple <timestamp, node>. “Node” specifies the node it moved to
while “timestamp” tells the age of the forwarding address. As an object
moves, it leaves behind a trail of forwarding addresses which can later
be used to locate it. Given two different forwarding addresses, the most
recent one is easily found by comparing the timestamps.

The process of locating an object involves obtaining the object’s for-
warding address from the local node; then, if that node does not contain
the object in question, repeatedly querying the remote nodes for their
forwarding addresses until the object is located.

Should any of the steps fail, for instance if no forwarding address
is found, a broadcast is used instead. A message is sent to all remote
nodes asking for the object. Only a node which actually has the object
responds. If there is no reply within a certain amount of time, a sec-
ond message is broadcast to all remote nodes. This time all nodes are
expected to give a reply, positive or negative. Any node not responding
this time is asked again by direct communication. If the object can still
not be found, it is deemed to be unavailable.

When invoking a remote object, the invocation message is sent along
the chain of forwarding addresses. Only if it fails to reach the destina-
tion object this way will the location algorithm above be used.
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2.3 MIT SchMUSE

MIT SchMUSE [2] is a Scheme-based Multi-User Simulation Environ-
ment, thereby its name. Scheme is a dialect of the programming lan-
guage LISP. SchMUSE is described [2] as a “concurrent, distributed,
delegation-based object-oriented interactive environment with persis-
tent storage.” One big difference from the type of system aimed for in
this paper, is that it is designed to run in a “capricious network environ-
ment”. Server nodes are expected to regularly become unavailable, and
to reappear at a different networking address. Also, clients can act as
servers which makes security a more difficult and important issue with
MIT SchMUSE.

The delegation-based object system deserves a closer look. An ob-
ject instance consists of separate nodes, each a partial object that corre-
sponds to one of the inherited classes. A node is said to delegate to its
parent nodes. Its parent nodes are its inherited classes which are not
necessarily present on the same server. A distribution of these nodes
across several servers is called remote delegation. Each node holds the
data members of the class it represents and references to the node in-
stances of its parent classes. This allows for extensive object and class
sharing, while retaining a high degree of privacy control in a system
where the servers are not all controlled by the same authority.

Object references in MIT SchMUSE are called globally unique tick-
ets. There are object tickets that refer to objects and class tickets that
refer to classes. The components of the tickets are as follows:

ObjectTicket : ClassTicket, btime, bmachloc, RealmTicket

ClassTicket : classname, btime, bmachloc, RealmTicket

RealmTicket : realmname, btime, bmachloc

In each ticket, “btime” is the time that the entity was created, its
“birth time”. The time is a millisecond reading of the real-time clock on
the server where the entity was born. “bmachloc” is the “birth machine
location”, the network address of the computer where the entity was
born. These two components make the tickets unique thus separating
all objects, classes and realms from each other.

A realm is an own namespace with a collection of objects. Each sepa-
rate realm can be stored in persistent storage and later be brought back
on the network, possibly at a different network location.

In addition to the birth time and location components which makes
an object ticket unique, it also contains a class ticket and a realm ticket.
The class ticket is used for debugging purposes. The realm ticket, how-
ever, is used for locating the object when the object ticket is used. If
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the object ticket’s realm is the local realm, the object is simply looked
up in the local object table. If the realm is remote, its current network
location must be found, so the message (invocation) can be forwarded to
it.

A realm ticket says nothing about the current network location of
a realm. Locating a realm is done through a distributed hierarchical
mechanism named “Central Services.” When a new SchMUSE node
connects to the network, it is assigned one server that acts as its realm
resolution authority. The new node informs this server of the realms it
is making available. From there the information is propagated through
the Central Services hierarchy on demand, much the way domain name
servers on the Internet function.

At the time that the SchMUSE paper [2] was written, object migra-
tion was not yet part of SchMUSE. The paper does, however, point out
Emerald [6, 7] and its forwarding addresses [5] as a solution likely to be
chosen for the planned object migration support.

2.4 The distributed snapshot algorithm

This algorithm was designed by Leslie Lamport and K. Mani Chandy. A
description is given here that is hopefully intuitive and easy to under-
stand. A more detailed and technical description, including a proof, can
be found in the paper [3] by Lamport and Chandi.

Determining the global state of a distributed system is not easy. It
is impossible for two computers to record their state, or do any other
coordinated action, at exactly the same time. The reason for this is
the variations in the time it takes to pass a message between the two
computers. Synchronizing the clocks of two computers across a network
is not possible.

When determining a global state one must also consider messages
that are on the network at the time, that is, messages that have been
sent but not yet received at their destination.

An obvious solution would be for all involved computers to halt nor-
mal processing, record their state and finally resume normal processing
again. However, this delay can be a high price to pay for systems where
a high degree of responsiveness is required. An important property of
the snapshot algorithm is that it is completely transparent; normal pro-
cessing is not halted or affected in any way other than the extra work of
storing state.

It is not always necessary to acquire a global state that actually oc-
curred at some point. A consistent state that may have occurred often
suffices. The purpose of the snapshot algorithm is to find a consistent
global state that may have occurred in a distributed system. Figure 2.1
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Figure 2.1: Distributed snapshot: a consistent global state that may
have occurred

shows how the recorded snapshot may deviate from the actual situa-
tion. The snapshot preserves the internal consistency of the distributed
system. The snapshot, state S2, is reachable from the initial state S1,
and the future state S3 is reachable from S2. S2 is a state that may
have occurred, but not necessarily one that did. S1 and S3 are actual
past and future states, respectively.

The snapshot may falsely record that a special condition is present,
or not present, in two or more computers at the same time. This, how-
ever, can only happen if the events are not dependent on each other. If
event X is a prerequisite for event Y and event Y is in the snapshot, then
event X will be as well. This guarantee is important for consistency.

The distributed system consists of processes and channels. The state
of a channel is said to be the messages sent along that channel which
have not yet been received. Each process has a set of input channels,
where it receives messages, and output channels, where it sends mes-
sages. The following assumptions are made:

• Channels and network do not fail.

• Channels are error-free.

• Messages are delivered in the order they are sent.

• Any process can reach any other process through a sequence of
channels.

• The delay experienced by a message in a channel is arbitrary but
finite.

Any process may initiate a snapshot and the processes continue with
their regular processing while the snapshot is taken. It is the responsi-
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bility of each process to record its own state and the state of all its input
channels.

The processes and channels form a graph. The processes are the
nodes and the channels the edges. The algorithm is based on simple
graph traversal. One process takes the initiative to start the snapshot.
It records its own state and sends a special marker on all its output
channels. The first time a process receives the marker, it records its own
state, then immediately sends the marker on all its output channels. All
messages received by a node on a particular channel between the time
that the node recorded its state and the time that a marker arrives on
that channel, are recorded as the channel’s state.

What happens when a process p receives a marker along channel c,
is shown by the following pseudo-code:

if p has not recorded its state then

begin
p records its state
p sends the marker on all its output channels
p records that input channel c is empty
p begins registering messages received on all the other input
channels

end

else
p records the state of c as all the messages received through that
channel after p recorded its state

Note that all processes send one marker on each of their output
channels, and receive one marker from each of their input channels.
When a marker is received, it is known that the sender has recorded its
state.

A snapshot is consistent if causality is preserved. If X causes Y and
Y is in the snapshot, then X must be as well. That is what it boils
down to. For the result to be inconsistent, X’s process would have to
record its state first, then event X take place, followed by event Y and
finally Y’s process recording its state. This cannot happen because the
snapshot algorithm requires a process to send a marker immediately
after recording its state, and messages are received in the order they
are sent. This is a crucial part of the algorithm. The message sent by X
that causes Y in the other process will be sent after the marker. When
it arrives, the process where Y will occur has already recorded its state,
thus neither event is recorded in the snapshot.

14



Chapter 3

Analysis and Design

This chapter discusses, one by one, the problem areas that had to be
dealt with when designing the distributed DGD server.

3.1 Object naming and object references

In a distributed object oriented system each object must obviously have
a globally unique name or identifier by which it can be referenced. This
minimum requirement ensures that specific objects can be found and
different objects told apart. On the other hand there are systems in
which a name is more than just a unique identifier. One example is
the hierarchical host names of the Internet — the name of a computer
gives a clue as to which server to query to find that computer’s address.
The hierarchical names ensure both that the work of answering such
queries is nicely divided between many servers and the correct server is
easily found by clients. The size of the Internet and this system today
proves how well this technique scales.

Since the goal here is a relatively small number of server nodes con-
nected through a local network, scalability is not a great concern. Speed
and flexibility are more important factors. As we shall see in the follow-
ing section, binding names to locations is not the fastest way to locate
objects. Our requirement, therefore, is merely that every object has a
globally unique identifier that tells it apart from every other object in
the distributed system.

A straightforward way of constructing a globally unique identifier
is to use two elements. One element holds a unique identifier for the
node where the object was created. The second element is an identifier
that makes the object unique within that node. Each node generates
a sequence of numbers to be used for this second identifier in objects
created at that node.

MIT SchMUSE uses the location of the birth machine, coupled with
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a timestamp from that machine. Object identifiers in Emerald consist
of an 8-bit node identifier and a 24-bit sequence number unique within
that node. This was discussed in chapter 2 in more detail.

For the DGD based system, a simple node identifier and sequence
number combination will be used. When a new node is connected to
the system, it is given a unique number. Whenever an object is created,
the object sequence number is incremented, so that each object the node
creates is given a different one. Thus an object reference is comprised of
two integers, node number and object number, uniquely identifying an
object. Each node holds a table that translates such references to native
DGD object references for all objects present at that node at the time.

To provide new nodes with unique node numbers, a special object is
created, called the central daemon. It is given a special object identifier,
0:0 — node 0, object 0. Node number 0 is never used anywhere else. This
object moves freely just like other objects. It is not central in location,
rather it is central in an authoritative sense. It is the only object in
the system with an object identifier (OID) known to all objects. If other
such special objects are needed, the central daemon can be given the
responsibility of holding their OIDs and providing them to code that
needs them.

3.2 Locating objects

Given that objects are allowed to move freely, being able to locate them
in any given situation is not a trivial task. Because the system is in-
tended to be highly interactive, delays should be kept as short as possi-
ble. Furthermore, local processing is fast compared to sending network
messages and waiting for a reply, so it is important to keep the number
of messages passed low.

In our setting, objects can theoretically move from one node to an-
other, and just as they arrive, move again. So even constantly moving
objects are possible. One option for locating objects would be to keep
a supervising node for each object, perhaps the node where that object
was created. That node would always know the whereabouts of the ob-
ject and when that object needs to be located, its supervising node can
be queried. Whenever an object moves between nodes, it would send a
message to update its position with the supervising node. The problem
with this and other centralized schemes is that highly mobile objects in-
cur much overhead in the form of update messages to the central node.
Also, by the time this information gets anywhere it may be outdated be-
cause the object may have moved again. It must be expected that some
objects migrate often. This solution does not appear to be a good one.

A decentralized scheme would seem more suitable. Also, since a

16



A
B C

D

F

G

E

Figure 3.1: Forwarding addresses; the basic case

LAN (local area network) is assumed, broadcasting messages from one
node to all the others is a possibility. Still, one should remember that
having to process many broadcasted messages may hurt performance in
a case with many server nodes. The more nodes in the system, the more
nodes searching for objects. Avoiding excessive broadcasting will thus
be important to allow more than a handful of nodes to function together.

Emerald’s [6] combination of forwarding addresses and broadcasts
is a good starting point. The basic idea of forwarding addresses is that
when an object moves, it leaves a forwarding address pointing to the
node it is moving to. As it keeps moving, it leaves a chain of forwarding
addresses, which can later be used to locate the object.

Figure 3.1 shows a very basic case with forwarding addresses. The
nodes are shown as circles, named with single letters. The object in
question is the black spot, currently located at node F. The arrows show
the forwarding addresses the object has left as it travelled from node D
to E, then from E to F.

Each node has a table translating object references to forwarding
addresses. If a node does not know anything about an object, there will
be no entry for it. If the node knows that the object has been destructed,
the special value zero is used, which is not a valid node ID. Being able
to quickly determine that an object no longer exists, makes it possible to
avoid doing an extensive search for the object whenever a reference to it
is used. Each forwarding address is also associated with a timestamp,
which purpose will be explained shortly.

Objects are located only to deliver a message from a thread, telling
it that it is needed at another node. Such a message is sent when it
is realized that the thread needs a remote object. Any given thread
sends such a seek message to an object only once. When the message
has been received, the object knows what it needs to know and further
communication is unnecessary. Therefore, each search is unique by the

17



tuple <thread ID, node ID, object ID>, specifying which object is wanted,
which thread needs it and which node the thread runs on. Each seek
message also contains a timestamp, as discussed in a following section.

As a seek message arrives at a node where the object is not present,
it is stored on that node and forwarded to where the forwarding address
points. In this way the search forms a chain of nodes. In addition to the
seek message itself each node stores pointers to the next and previous
nodes in that chain. Thus, when the message has been delivered, the
chain of seek messages can be followed from the point where the object
was found. Each node is told to remove the seek message it has stored,
and also given a chance to update its forwarding address for the object.
It is important that the forwarding address is only updated if it can
be replaced with information that is actually more recent. Otherwise,
forwarding addresses would soon point the wrong way, and following a
trail of them would not always lead to the object. A simple counter is
kept as a timestamp for each forwarding address. Every time an ob-
ject moves, the counter it gives to forwarding addresses is incremented.
Thus the forwarding address with the highest counter holds the latest
known location of the object. Fowler [5] has shown this to be sufficient.

In the case of figure 3.1, a search starting from node D would locate
the object in two steps. The “seek” message would go from D to E, be-
coming stored at E. Then it would continue from E to F, following the
forwarding addresses. As the object is found at F, the message is deliv-
ered and a “found” message is passed back. The found message contains
the tuple <thread ID, node ID, object ID>, thereby uniquely identifying
the search. It also contains the forwarding address to the node where
the object was found, including the timestamp of that forwarding ad-
dress. As the “found” message arrives at E, the stored “seek” message
is removed, and the found message passed on to D, following the search
chain. When D receives the found message, it will find the timestamp on
the included forwarding address to be newer than the one it has. Node
D then updates its forwarding address. Thus a subsequent search for
the same object will be faster, not having to pass through node E.

The common case is likely a forwarding address leading directly to
the object. Messages are then delivered immediately to the correct node
without passing through intermediate nodes. This is likely because for-
warding addresses are updated with every search and with a geograph-
ical object distribution (see section 3.7.1) a large portion of object migra-
tions will be back and forth between two nodes, when objects are on the
geographical borderline between two nodes.

If a search had started at node A, in figure 3.1, there would be no
forwarding address with which to start. This is the only case when
broadcasting is used. A “seek” message is sent to every other node in
the system. The message is the same as other “seek” messages, ex-
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cept that it can be recognized as a broadcast “seek” message. There are
four possible replies to this message, and each node must reply. If the
node has the object; it delivers the message to it and replies that the
message was delivered. If it does not have the object, the reply either
contains the node’s forwarding address for that object, or says that the
node knows nothing about it. The node may also reply that the object
has been destructed if it has recorded that fact. If all the replies have
been collected and the message was not delivered to the object, nor was
the object found to have been destructed, a search can now be conducted
in the usual manner. Either way, the node’s forwarding address for the
object will be updated when it receives replies to its broadcast.

The common case will likely be that the object is found during the
broadcast and no subsequent search is necessary. This is possible be-
cause the broadcast message contains all the information of a “seek”
message. Emerald does not include the request in broadcast messages;
probably because the messages could get very large. In our case it
means the message must hold 6 integers (thread ID, node ID, object
ID, timestamp, the last two consisting of two integers each) instead of
2 (object ID). The payload of the message becomes three times as large,
but it is a significant performance gain in terms of speed because it cuts
down on message passing — and the message is still quite small.

Broadcasts will be implemented as multiple copies of the same mes-
sage sent to all other nodes individually rather than a single “real”
broadcast message addressed to all computers on the network. This al-
lows the snapshot algorithm to fit in easily, as we shall see in section 3.6.
It should be noted that network messages do not travel between nodes
at a set speed. If A broadcasts a message for an object it might receive
the message at node F then move to node C and receive the same broad-
cast message at node C. Therefore objects must be prepared to receive
the same “seek” message multiple times. In theory it could even happen
that the object receives the message at node F, goes to node A to service
the request, then back to node F, and finally to node C where it receives
the broadcast a second time. At this time, the thread requesting the
object has already executed. This is extremely unlikely and not a big
problem, as long as node A is prepared for the object arriving a second
time to service a thread that no longer exists.

An extreme case is shown in figure 3.2. The object is in transit be-
tween F and C. As the forwarding address arrows show, the object has
been moving in a circle through F, C, B and E. The “seek” messages may
never catch up with the object if it keeps moving. But the object will
sooner or later land on a node where the seek message has already been
stored, completing the search.

The fact that an object no longer exists may be known by some nodes
but not by others, as depicted by figure 3.3. Seek messages would follow
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Figure 3.2: An object in transit
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Figure 3.3: A destructed object
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Figure 3.4: Impossible situation

the forwarding addresses as they normally do. Then when it is dis-
covered, at node F, that the object has been destructed, a “destructed”
message is passed back along the search chain. This allows both node
E and D to update their information on the object. Finally node D can
inform the thread in question that it is referencing a destructed object.

Our rule is that by following forwarding addresses, one eventually
ends up on the node holding the object. This rule would be broken if a
situation such as that in figure 3.4 could occur. Since an object always
leaves a forwarding address when it moves, this could only happen by
overwriting a forwarding address. As long as a node’s forwarding ad-
dress points to a node which has newer information on the object, which
again points to a node with newer information, the object will be at the
end of the chain. This is not true if one of those nodes are “updated” with
old information. Therefore, nodes must only be updated with informa-
tion newer than what they already have. That is what the timestamps
of the forwarding addresses are there to take care of.

Note that failing nodes would also break the paths of forwarding
addresses. That will be ignored here, however, since tolerance of failing
nodes is not attempted.

3.3 Object migration

Compared to other parts of the system, actual object migration is a sim-
ple matter. Objects are destructed, their contents passed across the
network, and then they are reconstructed on the other side. Turning
the object’s data into a sequential representation fit for transport across
the network is often referred to as marshalling. Reconstruction on the
other side is known as unmarshalling. Special care must be taken with
data structures containing recursive references. For example, an array
could contain an element referencing the array itself. The array must be
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passed only once, further references to it are passed as just references.
Native DGD object references are passed as nil. It is not possible to

reconstruct such references as they have no meaning on another server
node. DGD uses nil as a null value, given to references to destructed
objects among other things. It is different from zero or the empty array
in that nil is “nothing” while zero is still a number and the empty array
is still an array. Distributed objects should not use native DGD refer-
ences as they would be lost every time the object migrates to another
node.

Code is assumed to be available in a central repository, so no code is
passed with the object’s data. Just a reference (filename) is passed so
an instance of the correct object can be created at the destination.

When an object leaves a node, a forwarding address is created and
left behind as discussed in the previous section. The forwarding address
is recorded in a table for easy lookup.

When an object arrives at a node, after it has been reconstructed
from the network data, it is entered into the node’s translation table for
object IDs and native DGD object references. Then, if any threads were
waiting for this object they are awakened, unless they are still waiting
for other objects. This is explained further in section 3.5.

3.4 Attaching and detaching server nodes

When attaching a new node to the system, it connects to a single one
of the existing nodes first. That node queries the central daemon to
give the new node a unique node ID, and also passes the new node a
list of all existing nodes in the system. The new node then opens a
communication channel with each of the other nodes.

Removing a node involves a little more work. First the node must
rid itself of all objects. As an object is forced off the node, a message is
also sent to all nodes telling them to forget any forwarding addresses
they may have for the object. It may seem more efficient to give all
nodes a new forwarding address pointing to the object’s new location
through this broadcast, but the broadcast message may arrive at some
nodes before the object arrives at its destination. Thus the forwarding
address would point to a place where the object will be some time in
the future, not a place where it is or has been and the search algorithm
would fail.

When room objects leave the node they must be given a new “home
node” (see section 3.7.1) to prevent objects from trying to come back.
The new home node could be specified when initiating a node removal.

After all objects have left, the node can broadcast a message saying
it is shutting down. This prepares the other nodes for a disruption in
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communication. Other nodes would otherwise believe that the node has
crashed when the connection with it is lost. After this has been done,
the node shuts down all communication channels and shuts itself down.

3.5 Execution of threads

As with multitasking in an operating system and multithreading within
a single process, when threads execute in parallell in a distributed sys-
tem, concurrency problems can occur. The problem lies in the threads’
need to share access to resources in a reasonable manner without caus-
ing inconsistencies.

The basic correctness issues in the design of concurrent programs
are safety and liveness. Formal definitions can be found in the paper
by Alpern and Schneider [1]. Simple informal definitions will suffice,
however. Informally, safety means that nothing bad will happen, while
liveness means that something good will happen. Two threads simulta-
neously accessing the same object may lead to inconsistencies. This is a
safety problem. On the other hand, it must be guaranteed that a thread
eventually gains access to the objects it needs, which is a liveness issue.

The DOME paper [10] has a nice example of this problem. It is
taken from a classic adventure game setting. An adventurer chased by
a dragon is attempting to close a door to save himself, while the dragon
is attempting to go through the door and eat the adventurer. Assuming
a rather sturdy door, it should never happen that the adventurer closes
the door just to be eaten by the dragon an instant later. Yet, this is
exactly the kind of inconsistencies that may occur. The dragon’s code
checks the door, seeing it is open. The adventurer’s code then closes the
door. Thinking it has made sure the door is open, the dragon’s code then
moves the dragon through the door and lets it eat the adventurer.

The problem is well known from the database world where the re-
sults would be rather catastrophic were two transactions allowed to
freely access the same data at the same time. Traditional databases
use locks to solve this problem. Data locked by one transaction may not
be accessed by another before the first transaction has finished with it.

Locks may seem like a quick solution, but they introduce the prob-
lem of deadlocks. Deadlocks are especially cumbersome and slow to
locate and resolve in a distributed system because it involves the pass-
ing of messages across the network as nodes must cooperate to solve the
problem.

DOME does things a little differently, using a form of optimistic con-
currency control. Each thread works on its own temporary copy of data.
When one thread finishes, it is allowed to overwrite the “real” data with
its temporary copy. Any threads that had accessed data which now be-
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came overwritten are rolled back. Their temporary data copy is dis-
carded and they start executing from the beginning again with a new
temporary data set. They must start over because their work was based
on outdated data such as the door no longer being open in the example
above.

Actually, the type of inconsistency described by the example cannot
occur in the distributed DGD system as long as an object is only allowed
to exist at one node at a time. Since threads in one DGD server are
executed sequentially, only one thread could access the object at a time.
In a way the safety problem regarding inconsistencies is already out of
the way. The problem is for a thread to get all the objects it needs to
execute, fetching them from other nodes if necessary. There are two
interesting properties here. The first is that it is generally not possible
to know in advance all the objects a thread will access. The second
is that a thread cannot stop to wait for anything in any way. It must
execute from start to finish without pause.

3.5.1 Remote objects

In DOME’s case a half executed thread might discover that another
thread has modified data it was dependent on. With DGD the case is
that a half executed thread might discover it needs access to an object
currently held by another node. While these two cases sound very differ-
ent, they are similar enough that the same solution lends itself well to
both. Though for different reasons, the threads are unable to complete
in both cases.

By declaring a function atomic in DGD, any changes caused since
execution entered that function can be undone by passing an error from
that function. Any effect the function had is rolled back. Only the error
message survives. Using an atomic function to run most of a thread,
rollbacks like those of DOME can be performed. Placing object identi-
fiers inside the error message tells the code higher up why the thread
was rolled back. That code can then perform a search for the missing
objects as described in section 3.2. When the objects arrive, the same
thread is attempted again by another call to the atomic function.

3.5.2 Locking objects

One further complication arises once a thread has been rolled back and
a request for the missing objects has been sent out, however. Once the
objects begin arriving at the local node, it will be necessary to decide if
they should be held indefinitely on that node awaiting action, or if they
should instead be released when other threads request them, accepting
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the possibility that the thread which first requested them did not have
a chance to execute yet.

Not locking objects on nodes where they are needed will cause them
to move more as they will eventually have to move back so the thread
can finally execute. This can be inefficient, but in the worst case it can
even prevent progress indefinitely. An example would be threads on
nodes A and B both needing objects 1 and 2 to run. Object 1 is located
on node A, and object 2 on node B. Each node will request the object
it does not have. Then both nodes will give up the only object they do
have, only to realize the thread still cannot run when the requested
object arrives. The objects may bounce back and forth in this manner
indefinitely, preventing the threads from ever finishing. This behavior
was witnessed in a half finished version of the test implementation.

As mentioned previously, locking introduces deadlocks which are
complex and slow to detect and resolve in a distributed system. If both
nodes in the example above are unwilling to give away the object they
have, neither will ever finish. They will sit and wait for each other for-
ever. Given the time and complexity involved with solving this situation
it is better to avoid that it occurs in the first place.

If threads could agree on which of them has a higher priority, threads
with lower priority could release their objects when two or more threads
of different nodes attempt to access the same object. We must be care-
ful, however, that we do not introduce another liveness problem. Each
thread must be guaranteed to finish in finite time. To guarantee this
is to guarantee that newer threads do not constantly take priority over
older threads, delaying them indefinitely. This can be achieved by creat-
ing a total ordering of threads where threads are given higher priority
the older they are.

To decide which of two threads are older some sort of timestamp
is needed. Absolutely required here is that a thread will eventually
become the “oldest” thread if it keeps getting delayed because other
threads are taking its objects. Timestamps do not have to be entirely
accurate to do this. In fact, Lamport [8] has shown that the physi-
cal clocks of distributed computers cannot be accurately synchronized.
Even if absolute accuracy is not required, there is a problem when dis-
tributed clocks differ significantly. One node should not constantly be
issuing older timestamps than another node, giving its threads priority
until those of the other node have aged enough.

Logical clocks [8] suit our purposes well. They do not give any node
an unfair advantage, and there is no need to alter the system clock.
The clocks are simply numbers that are counted upwards. Every time a
node needs to issue a new timestamp, it uses one that is one step above
the last one it has seen. This ensures that one node won’t be constantly
issuing older timestamps than the others. However, it can happen that
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two nodes issue the same such numbers to two threads and those two
nodes must be able to agree on which thread has priority. Including
a random value with the timestamp solves this, the random part only
being compared if two threads have the same logical timestamp. Should
the random values also match, final resolution can be based on node ID.

When remote objects are requested by a thread, the logical times-
tamp, including its random part, is included with the request. This way
the object can build a prioritized queue and move to the nodes where it
is needed one by one, visiting the oldest threads first.

3.5.3 Destruction of objects

When a thread destructs an object, the fact that the object no longer
exists is registered at that node. This way the node can respond to any
future searches for the object. Most of the time this is all that needs to
be done.

If multiple threads are attempting to access the object simultane-
ously and one of them destructs it there may be threads at other nodes
waiting for the object at the time when it is destructed. To prevent those
threads from locking up forever, their nodes must be told when the ob-
ject is destructed. As the object holds a prioritized list of threads that
have requested it, it is a trivial task to notify them. The other threads
will then be allowed to run, and references to the destructed object will
evaluate to nil for them. Consistency is not a problem. These threads
have already been ordered sequentially by priority. The thread that de-
structed the object ran before the others. When they run the object no
longer exists.

3.6 Persistence

The distributed system must be able to save its state, shut down, and
later start up, restoring its state. This ensures that changes to objects
do not disappear under normal conditions such as the servers being
taken down for maintenance and later brought back online. It is a dif-
ferent question, though, how much should be attempted to prevent loss
of data in the case of a crash.

The question is what data it is acceptable to lose if the system should
happen to crash. None really, but some data are more important. On
one hand, credit card information, and anything related to credit card
transactions such as memberships are clearly things one does not want
to lose. On the other hand, if a user picks up a worthless pebble in a
virtual world, it is probably not a disaster if it disappears in a crash. To
make things a little more difficult, though, virtual items that only exist
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in online games are being bought and sold by players of the games. This
actually creates an exchange rate between virtual currencies and real
currencies. Users would probably not be happy to see expensive items
disappear.

To be on the safe side, one could treat all threads as transactions and
store all their changes in a traditional database system. This would be
extremely expensive though. The virtual world wouldn’t need to be dis-
tributed if it wasn’t a large one with many users. The database servers
would have to be fast to keep up. Even then, having to store the result
of each thread like this would slow everything down.

A better option is probably to store a backup copy of the system
state at regular intervals. Important data could be kept in a tradi-
tional database or in both places. If a backup is made each hour, at
most one hour of changes would be lost in a crash. DGD has a builtin
functionality for storing the state of one DGD server to disk, and it does
so relatively fast. The problem is that the server nodes can not be syn-
chronized to dump their state at exactly the same time. Besides, there
may be data on the network that has been sent but not yet received at
the destination — this information must also be stored.

The snapshot algorithm is perfect here. It can be implemented fairly
straightforward with DGD; storing a node’s internal state as a state-
dump and storing network state by writing the messages to files di-
rectly. The algorithm requires communication channels between nodes,
such that each node is reachable by every other node either directly
or through other nodes. Each node being directly connected to every
other node covers this requirement. Also, each communication channel
should have one sender and one receiver. For this reason broadcasts are
best implemented by sending multiple copies of a message, one to each
node individually, it allows the snapshot algorithm to fit in without any
problems.

3.7 Distribution scheme

A difficult question is how to decide which objects go on which server
nodes. The division of objects among servers should be done in a way
to allow efficiency to be as high as possible. There are mainly two ways
in which the location of objects negatively affect performance. The first
scenario is when objects accessed by a thread are on different nodes.
Rolling the thread back and fetching the objects is a bad performance
hit on that thread. A variation of this is when threads on different nodes
frequently need the same objects, causing objects to migrate back and
forth. The other scenario is having too many objects on the same node,
causing that node to become overloaded while other nodes are idle.
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Keeping related objects, objects that interact with each other, on the
same node reduces the likelihood of having to fetch remote objects for a
thread. The problem is knowing which objects are related. Also, some
relations are stronger with more interaction than others. At the same
time, objects must be spread out among the server nodes to balance
the load between them. Just spreading the data equally between the
nodes does not necessarily do the job. If one node had a lot of objects,
some objects that were not being used would be swapped out to disk,
so holding many objects without much activity is not a big problem.
Central to the load balancing problem are objects that start threads.
The threads take processing power on the node where they run and
also increase memory usage by fetching objects into physical memory
whether they are objects that were swapped out to disk earlier or remote
objects from other nodes. Any object can start timers that set off new
threads. It can be hard to predict which objects do this. But the majority
of threads are likely started by the objects that accept input from users
and take actions to respond to that input. Adding to this, handling input
and output to and from users is some work in itself. It would seem that
these user objects are central to load balancing the distributed system.
While we are not going to attempt any complex active load balancing,
objects should be distributed in a way that ensures some level of load
balancing. This is necessary to prevent the system from easily breaking
down and becoming unusable.

3.7.1 Geographical division

A solution should spread the user objects on different nodes and keep
with them the objects that they interact with. How this can be done
depends on the type of system in question. For a virtual world, it can
be expected that geographically close objects interact more with each
other than two objects that are geographically far apart. A user moves
from one room or area to the next, objects are picked up, carried objects
may be left behind — the majority of actions involve the immediate
environment.

Splitting the virtual world up in zones by geographic location and
keeping the objects for each zone on its own server node is not a new
idea. Several online games have been implemented this way, although
the borders between zones are easily visible and a significant delay is
incurred by crossing those boundaries. Such unwanted side effects are
not a necessary consequence of a geographical division, but there is one
major shortcoming to using this scheme which will be reviewed in the
section below. Finding a solution to this problem is not easy, but nei-
ther is it easy to find a better way to partition a virtual world than by
geography.

28



Lacking any revolutionary solutions a geographical division will be
used, including its well–known problem. Objects should be spread a-
mong the nodes depending on their geographic placement, but some
flexibility for free movement should still be maintained. At least objects
must be allowed to move to another node for a short time if a thread
on that node wishes to access the object. Some objects are mobile while
some are stationary. Objects describing the geography are naturally
stationary and they are a good starting point for a geographic division.
By giving each such object a “home node”, the geographical borders be-
tween server nodes have been drawn. Home nodes can be assigned by
a developer based on knowledge of the computing power of the different
server nodes and expected activity levels in different areas of the virtual
world. The idea could be expanded on with a dynamic load balancing al-
gorithm that would change objects’ home nodes for a smoother balance
between nodes.

There are many possible ways objects could be moved between ser-
vers. Emerald allows objects to be grouped together in such a way that
they all move together when one of them initiates a migration to an-
other server node. However, it is extremely difficult to foresee object
usage patterns, especially in a highly interactive system where the user
might move between server nodes and access objects at will. As an ex-
ample, a user might move between nodes several times before eventu-
ally interacting with any carried objects. It is more efficient, then, to
move those objects directly from the first to the last node rather than
have them follow the user each step of the way.

Following this philosophy, most objects will move freely to wherever
threads need them. The exception is user objects. As mentioned above,
it is important to spread them out. As a user enters a location, his user
object is moved to the “home node” of that location if it is not already
there. As the user interacts with the environment, any objects describ-
ing that environment are moved to that node because that is where the
thread is started; in the user object. Thus there is no need to force any
objects to that node except for the user object when it arrives at the
given location.

3.7.2 Flash crowds

Geographical division makes sure the objects most likely to interact are
on the same node. However, it does not take equally well care of the
other end of the problem — ensuring that users are spread out on dif-
ferent server nodes. The problem is, of course, that keeping closely in-
teracting objects together while keeping users apart are two partially
contradicting goals. One might design a virtual world and partition it
in such a way that activity is expected to be roughly equal on all nodes,
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and under normal operation it might be. However, there is always the
danger of a special event of some kind drawing a huge number of users
into a small geographic area. This phenomenon has been called “flash
crowds” and “stampeding hordes” among other things. Suddenly a large
portion of the users move to the same server node and the system breaks
down. Forcibly moving them to other nodes is not much of a solution,
though probably better than letting the system become unusable.

3.7.3 User connections

With mobile user objects handling users’ input and output, there is the
question of how network connections between servers and users should
be maintained and how input and output travels between this connec-
tion and the corresponding user object. There are two straightforward
ways of doing it. Either connections follow the user objects, or users
connect to one server node while input and output has to travel to and
from the node holding the user object at any given time except when it
happens to be on the same node as the network connection.

Obviously, doing a lot of forwarding of user input and output would
increase traffic between nodes. Furthermore, this forwarding is not
suited to high–level LPC code where it might have a significant im-
pact on performance. Therefore, user objects will notify users so they
can establish a new connection to the correct node when the user enters
an area with a different home node. This way connections follow user
objects and do not cause unecessary work for the server nodes.
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Chapter 4

Implementation

This chapter discusses the implementation. It is over 15 000 lines of
LPC code in addition to a small C program. It took some work before
it was stable and everything ran smoothly. The implementation was
built on top of the kernel library that comes with DGD which provides
some basic functionality and a framework to build on. As most of the
details are irrelevant to this paper, the focus is on aspects discussed in
the other chapters.

4.1 Node interconnection

DGD does not by itself allow making outbound network connections.
To make this possible a small program, external to DGD, was written.
This program connects to DGD, allows DGD to tell it to connect to other
nodes, and accepts inbound connections from other nodes. Traffic going
to and from other nodes are multiplexed over the single connection to
DGD.

On each node a single object, icond (interconnection daemon), han-
dles most of the network logic. This object talks to the external program
presented above. Broadcast messages are emulated by sending a copy
of the message to each connected node.

The distributed system starts with a single initial node. New nodes
are added by letting them connect to an existing node. After connecting,
the new node receives a node ID and a list of all other nodes in the sys-
tem. It can then connect to each of the other nodes. To make sure node
IDs are unique, they must come from a central source. This source is an
object called the central daemon (centrald). It is actually a distributed
object, but it is central in the sense that there is only one of it and it
has a well known object identifier. This object is created by the system’s
initial node at boot time before it assigns itself a node ID.
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4.2 Distributed objects

For some objects, such as the icond mentioned above, it does not make
sense to have distribution properties. All the distributed objects inherit
/lib/distributed which provides all necessary functionality. When
such an object is created it is automatically given a unique ID consisting
of the node ID of the node it was created on, and an object ID which is
unique on that node.

For an object to move from one node to another, its state must be
gathered and converted into a serial format suitable for transfer across
the network. This process is known as marshalling. There are func-
tions in /lib/distributed that marshal and un-marshal an object
before and after network transportation. Since there is no way for the
marshalling code to get a list of the object’s data members and their con-
tents, all object state must be placed in a special mapping. A mapping
is a native datatype in DGD representing an associative array. Mar-
shalling can then be done since this mapping is a known variable.

A prioritized list is kept of threads that have requested the object.
Migration is automatically triggered to service the thread with the high-
est priority. Thread priorities are discussed in section 3.5.2 on page 24.
When the thread at the top of the list has completed, the object im-
mediately migrates to service the next in the list. Migration can also
be requested by a function call, but it has no effect unless the list of
requests is empty.

4.3 Object references

As long as DGD’s native object datatype is not modified, something
else is needed to hold references to distributed objects. A simple array
was chosen for this purpose. OBJREF was defined as an array of mixed
datatypes.

An OBJREF has two elements. The first is another two-element ar-
ray containing the node and object identifiers which together constitute
a globally unique object identifier. The second element functions as a
kind of cache. It is either nil (nothing) or contains a (native to DGD)
object reference to the actual object. As an object arrives at a node, any
references to it on that node have nil in their cache. When an OBJREF
is dereferenced, the object is found by looking up its node and object
identifiers in local tables. A native object reference is then placed in the
cache to speed up subsequent uses of the same OBJREF. Should the ob-
ject leave the node, the cached native reference automatically becomes
nil again. As the object’s local copy is destroyed when it moves, all
native DGD references to it become nil per normal DGD behavior for
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destructed objects.
Unlike with C++ it is generally not possible to redefine operator be-

havior in DGD. However, the dereferencing operator (->) is equivalent to
calling the function call_other(). Overriding call_other() made
it possible to use an OBJREF in most ways just like a native object refer-
ence. The regular o->f() invokes a function, whether o is an OBJREF
or a native object. However, seeing whether two OBJREFs reference
the same object must be done by calling same(a,b), a function that
had to be written for that purpose.

4.4 Locating objects

Each node holds a lookup table indexed by object identifiers. The table
holds the node’s knowledge about each object. It may know nothing
about an object, in which case it has no entry. The object may be present
at that node, the table holding a native DGD reference to it. It may
know that the object has been destructed. Finally, the table may hold a
forwarding address for the object, with a timestamp. In this case it is
the latest forwarding address for the object seen by this node.

Objects are located using the algorithm described in section 3.2 on
page 16. The implementation of the protocol logic and routing of mes-
sages is straightforward and won’t be discussed here.

4.5 Object migration

Recursive data structures are possible in DGD and that is taken into
consideration when marshalling (serializing) the data. Callouts (de-
layed function calls) are also included with an object’s state. After mar-
shalling the object state, the source node destructs the object and sends
its state across the network to the destination node. The object’s type is
also included in the message.

When the state is received at the destination node, that node creates
an object of the correct type. The state is restored (un-marshalled) from
the network message and the object is then complete.

The repeated destruction and recreation of objects presents a prob-
lem. Like in many other object oriented systems, DGD objects have a
creator function that is called automatically when they are created. It
is normally named create(). However, create() is called each time
an object has migrated, and before its state has been restored. A cre-
ator function may have unwanted side effects that are not undone by
overwriting the object state. Therefore, a new creator function was in-
troduced, named new(), which is only called once at the creation of a
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new distributed object. The create() function in /lib/distributed
was given logic to call new() only at the appropriate time.

4.6 Execution of threads

The majority of threads are expected to run to completion without prob-
lems and in that case they are not even given a priority. Still, all threads
go through two special functions before they do anything else. These
functions make sure the rest of the code is executed atomically and if
necessary rolled back and given a priority for later execution. Figure 4.1
on page 35 should make the following discussion easier to follow.

The first function calls the second and catches the error thrown by
it, if any. If there was an error, it contains the IDs of the objects the
thread needs that were not present. The thread is given a priority, the
necessary information stored about it, and the missing objects are re-
quested across the network. As those objects arrive from other nodes,
they are taken off the thread’s list of missing objects. When the list is
empty, another attempt at running the thread is made.

The second function is atomic. Meaning, that if an error is thrown
from it, all changes made since execution of that function started are
undone. The only noticable changes are that ticks (processing resources)
have been spent and there is an error in the form of a string that can
be caught by code somewhere up the call chain. A specially formatted
error string is used to communicate which objects the thread needs. The
error() function is overridden to prevent normal code from generating
errors of this reserved format.

The atomic function calls the function that starts the thread’s actual
work. If it invokes an object that is not present at the node in question,
an error is thrown containing that object’s ID. This is not a complete
solution, however. Any code between the atomic function and the point
in the call chain where the error is thrown is able to intercept the error
with a catch(). Therefore the error condition is also recorded in an
object along with the ID of the missing object. If execution finishes
without an error, the atomic function then checks this special object for
an error condition. If there is one, the error string is regenerated and
thrown again. As it passes up from the atomic function all changes are
reversed.

There are two main problems with the implementation described
above. The first is that an object is not determined to be needed and
missing until it is dereferenced. If the thread needs to access 100 ob-
jects that are on another node, it will be rolled back 100 times. The
require() function is intended to remedy this problem. Passing a list
of objects to this function makes it possible for code to declare some-
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catches the error and throws it again

but thrown again since it has a
special format

Figure 4.1: A callchain example with error propagation

what in advance which objects it is going to access. This can cut down
dramatically on the number of rollbacks, increasing performance, but it
places more responsibility upon the programmer. It seems difficult to
find a more automated solution, however.

The other problem is that the special errors can be caught by normal
code before they reach the atomic function. This is no threat to consis-
tency as the atomic function will still find the error in a central object
as described above. Still, the thread continues to execute, wasting pro-
cessing resources past a point where it is known that all its work will be
rolled back. This hurts performance and safecatch() was added to let
programmers catch errors without having to worry about this problem.
This function catches an error, but throws it again if it has the special
format, so that the function appears to only catch regular errors. Since
DGD’s catch is a language construct rather than a function, a different
name (safecatch) had to be chosen. This unfortunately means the pro-
grammer must remember to catch errors the right way, or performance
still suffers.

Figure 4.1 shows an example. The boxes symbolize functions, while
the downward arrows are function calls and the upward arrows show
how the error propagates up through the callchain. At step 2, when one
or more objects are found to be missing, that information is stored in a
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special object before the error is thrown. If there had been a catch()
instead of a safecatch() the error could have been prevented from
propagating further up the callchain. But the atomic function can still
find the error condition safely stored in the special object. This way the
atomic function can always determine if the thread was missing any
objects or not. The user code cannot prevent this, only delay it.

The atomic function catches all errors and only throws an error itself
if there were missing objects. Any other error means the thread was
able to finish as far as the distributed system is concerned. When an
error is passed up from an atomic function, DGD rolls back any changes
made since that function started executing. The “System Core” in the
figure catches and deciphers the error so that it can attempt to run the
thread again when the missing objects have been fetched.

4.7 Persistence

The distributed snapshot algorithm described in section 2.4 on page 12
is used for persistence and the implementation is fairly straightforward.
Snapshots are initiated by the central daemon, which does so automati-
cally at one hour intervals. It is also possible to initiate snapshots man-
ually. Node states are recorded using DGD’s builtin statedump feature.
Network states are recorded by simply writing the relevant messages, if
there are any, to a file. A complete distributed snapshot consists of one
statedump file, and possibly one network file, per node.

The snapshots are numbered, and the marker messages carry these
numbers. This, in conjunction with node IDs, provides an easy way to
give the network state files unique filenames.

When the system is starting from a snapshot, the nodes must first
be connected, one by one. Once the last node has been connected to the
others, all the nodes will see that all the other nodes are again present.
They then each read their network state file. By having an object re-
member the number of the last snapshot performed, the correct net-
work state file can be picked. The messages read from the file are then
“played back” as if they were coming from the network. Afterwards, the
system is ready for normal operation.

A system that gathers up all the files belonging to a snapshot, stor-
ing them away in an archive, would probably be a good idea for real use.
However, it was not necessary for testing.

4.8 Test environment

On top of the system that supports distribution, a few simple things
were implemented to facilitate testing. User objects allow users to log
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in, holding a username and password among other things. Users also
have bodies as their “physical” representation. Other “physical” objects
are rooms and simple objects for users to manipulate. The command
parser understands a few commands with a very simple sentence struc-
ture. There is one object for each command that performs the actual
work. The parser and command objects are not distributed objects, in-
stead one copy of each object exists on every server node.

A few rooms were set up, creating a very small test world. To imple-
ment the distribution scheme introduced in section 3.7 on page 27, each
room was given a home node. When a user moves into a room whose
home node is not the current node, the user is forced to connect to the
room’s home node. This keeps users on the home node of the room they
are in. Since users start threads when they enter commands, it tends to
keep the rooms and their contents on that node too as those objects are
often invoked by commands.
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Chapter 5

Results and Conclusions

This chapter discusses results and observations from the test imple-
mentation and conclusions based upon them. At first it is necessary to
describe the test implementation that most of the results were derived
from.

5.1 The test implementation

An implementation was written as described in previous chapters. Af-
ter a few initial tests and observations, which will be discussed shortly,
it seemed interesting to measure a few statistics while the system was
used. These statistics might give an indication as to how well the theory
discussed in previous chapters work in practice. Events were counted
to see how often broadcasts were performed, how often threads had to
be rolled back and how much processing power was wasted due to roll-
backs.

There are many ways to run such a test. The best way is obviously
to do the measurements in an existing system running a large persis-
tent world on a dozen servers with at least several thousand users. The
persistent world would be designed for a particular purpose; the same
purpose the users are there for. That purpose may be entertainment,
business, a virtual university or something else. Even in this case, the
statistics would only apply directly for that type of system. A game
world and a virtual university would probably yield completely differ-
ent results because the users’ behavioral patterns would differ greatly.
In the game’s case, users (players) might move all around the persistent
world to gather some kind of points. The university might see more local
activity in the form of lectures and discussions. Still, teaching material
and data for collaborative projects might have to travel between server
nodes in an unpredictable fashion. The bottom line is that user behav-
ior, which is strongly affected by system type and design, will greatly af-
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Figure 5.1: A simple room-based test implementation

fect how and how much nodes interact. This again influences the afore-
mentioned statistics. Obviously, then, good results in one scenario do
not imply good results in another. Still, it seems reasonable to believe
they could give a good indication as long as differences in expected user
behavior are considered.

Unfortunately, a full test of any of the scenarios mentioned above
was out of reach for this relatively simple project. It was possible to
have a high number of computer controlled “users”, which could not
possibly have actual human behavior. The other option was to invite a
few people to try the system. This would at least give human behavior,
although it would be influenced by their reason for being there. There
was no time to construct an interesting system with a real purpose. So
users would be coming for the rather synthetic reason of testing the
system, most likely its distributed features in particular.

Despite the limitations, the latter option was chosen and it is hoped
that the results can still give an indication of how some aspects of the
system might behave in a real world situation. A small room-based
world was created and a message posted in a few public forums on the
Internet, inviting people to try the system. 25 people did and statisti-
cal measurements were recorded for about a month. The system was
entirely text based. Users had commands to move between rooms, take
items, drop them, list carried items, give items to another user, talk to
everyone in the same room and a command to send a message to another
user anywhere in the persistent world.

The persistent world was created as a handful of rooms, divided be-
tween four server nodes. Needless to say, the small amount of rooms and
users took no noticable amount of memory or processing power from the
servers the system ran on. Figure 5.1 shows a map of the world used.
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Each box on the map is a room. Users would appear in the room marked
“start” when they logged in for the first time. Subsequent logins would
have them appear at the room where they last logged out. Each room on
the map is filled with a pattern. Rooms with the same home node have
the same pattern and are normally located on the same server node.
Users move along the lines connecting the rooms on the map. The start
room was described as a cabin, while all the other rooms had outdoor
descriptions with a different theme for each node. An item or two were
placed in most rooms, allowing users to pick them up and carry them,
perhaps to another node.

5.2 Programming

Making distribution completely transparent to the programmer was not
attempted. Still, some degree of hiding the distribution mechanisms
was done. Ideally, the system should be easy to program for someone al-
ready proficient with DGD programming. While complete transparency
may be undesirable, the programmer should not be forced uneccessarily
to worry about issues of distribution support mechanisms. While trans-
parency was a minor concern, one of the most important goals was to
stay as close as possible to traditional DGD programming; its single-
threaded semantics in particular. The rest of this section will show to
what degree this was accomplished.

When programming, certain rules must be followed:

1. All distributed objects must inherit /lib/distributed directly
or indirectly.

This rule is actually a useful one. It allows the programmer to choose
whether or not to give an object distributed properties. Some objects
work better when not being part of the distributed class of objects. Ob-
jects that hold only code, or whose state is only relevant to one node,
may not need to be able to migrate. And without that ability, they are
always guaranteed to be available on the node in question. Examples
may be code for user commands, and objects that handle various local
node management.

2. All distributed objects must be clonable, and the master object may
not be used (since it cannot migrate).

When a file is compiled, a master object is created for it automati-
cally. To have more objects of the same type, “clones” can be created.
Master objects should not be destructed at random as recompiling the
code to get a new master object would introduce a new version separate
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from any existing cloned objects. However, it is necessary to destruct
the local representation of a distributed object when it migrates. This
is because it is relied upon that direct references (of the built-in DGD
kind) to an object become nil when it migrates. Destructing an object
is what makes all references to it nil. For this reason, the master ob-
jects of distributed objects should not be used in any way. This is not a
big problem, however, as it is a common practice not to make use of the
master object when clones are made.

3. Distributed objects may not create nor subscribe to events using
the kernel library’s event system. The kernel library is a library
of LPC code that comes with DGD which gives a good foundation
for further development.

This rule is not really a problem. If an event system is needed, one
can be written that is compatible with distributed objects. It could re-
place or run alongside the event system included with DGD’s kernel
library.

4. A distributed object’s creator function is named new(). This func-
tion is called only once right after the object is created. It is nor-
mally named create() when programming DGD with its kernel
library.

Two separate creator functions are needed. This is because the reg-
ular one is called every time an object is created to hold the state of a
migrating object received from the network. By modifying the kernel
library the names (create and new) could be switched, making the issue
of creator functions transparent.

5. Variables referencing distributed objects should be of type OB-
JREF. To see if two OBJREF variables reference the same object,
same(a,b) must be used instead of a == b. An object reference
of DGD’s builtin object datatype is only guaranteed to be valid
until the end of the current thread if it references a distributed
object.

Regular object references in DGD cannot hold globally unique iden-
tifiers, so a different type of reference is obviously needed. OBJREF is
actually implemented as an array, but DGD makes it easy to modify the
dereferencing operator (->), so dereferencing can be done the normal
way.

6. Data members of a distributed object must be declared as part of a
special mapping (associative array) rather than regular variables.
Otherwise they lose their state when the object migrates.
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Since there is no way for LPC code to get a list of an object’s data
members and their contents, all state must be placed within a known
mapping so that the state can be collected and sent to another node.
This annoyance could have been avoided by modifying DGD.

To ensure good performance, certain guidelines should also be fol-
lowed:

1. To catch errors (exceptions) the safecatch() function should be
used rather than DGD’s regular catch() construct.

The need for safecatch() comes from the specially formatted er-
rors that are intended to abort a thread’s execution so that it may be
rolled back as quickly as possible. Should code within the thread catch
this error and continue execution, it will take longer before the thread
can be rolled back. The thread is still found to have failed and even-
tually rolled back, so this has no bearing on the system’s integrity. It
hurts performance as it makes the rollbacks more costly by continuing
execution wastefully at a point where it is known that the thread will
be rolled back. Had distribution been implemented within DGD itself,
this issue could have been completely avoided.

2. If at a point in the code there is a collection of objects that sub-
sequent execution is known to access, then the underlying system
should be notified by a call to require().

Even if it had been possible, full transparency would probably not
be a good thing. During the construction of the test implementation,
the inventory command was first given a straightforward implemen-
tation. What the command does is to take the list of objects carried by
the user, collect a textual description from each of them in turn, and
finally display a list of those descriptions to the user. The result was
horrible performance when a user executed the command after crossing
over from one node to another. As the command accessed the items one
by one, the thread would be rolled back every time. If a user carrying
a hundred objects would move to another server and type inventory,
the thread executing his command would be rolled back 100 times. Not
only do the rollbacks themselves waste resources, requesting one object
at a time rather than all at once can result in a significant delay before
the thread is finally able to complete. Abiding by guideline number two
above, passing the list of objects to the require() function before ac-
cessing any of them, easily fixes the problem. In this case the system
will request all the necessary objects in one go.

The last example also shows that in a real system it would be ex-
tremely useful for programmers to be able to see how many rollbacks
are caused by their code. Such a mechanism could be used as a profiler,
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to locate performance bottlenecks. Not only are programmers bound to
forget the guidelines at times, it may also be difficult to see everything
that could cause such “cascading rollbacks”.

While none of this is in any way complex and the details of the under-
lying mechanisms have been hidden, a shorter list would be desirable.
This is one of the downsides to implementing distribution on top of DGD
using LPC rather than within DGD itself. While it is more flexible, as
everything can easily be modified and extended, even while the system
is running, it is impossible to do certain things transparently. Most of
the rules are merely annoyances and could have been avoided had DGD
been modified. The other downside is that the LPC code will not be
as fast as DGD’s code which is written in C. However, as the layer of
code supporting distribution stays out of the way most of the time, the
difference may not amount to much in practice.

Even if it may seem like much at first, the difference from regular
DGD programming is not that great. Code is still written the same way,
with a few relatively minor changes. Even though servers are working
concurrently, there are no concurrency problems to worry about for the
programmer. To any given thread, all other executed code appears to
have run either before it or after it. Single-threaded semantics have
been preserved. This is taken care of by the way threads are rolled back
and finally executed in entirety within one node, with exclusive access
to relevant objects.

The rules are simple and they are relatively few. Perhaps the great-
est danger lies in that breaking rules five and six will not break the code
until objects migrate. The result could be bugs that are hard to track
down and code that may work well for a long time before it suddenly
breaks for no apparent reason. Likewise, the guidelines may be easy to
ignore until performance really suffers. It would be safer, and easier, if
breaking any of the rules would result in immediate consequences. That
may be difficult to accomplish without modifying DGD itself, however.

5.3 End user experience

From the user’s point of view, the test implementation appeared for the
most part like other similar systems. One of the major objectives was
to keep the system quick and responsive as it is intended for interactive
use. To a great extent this was achieved except when crossing node
boundaries.

No delay is observed when sending a message to a user on another
node, but there is clearly a noticable delay when going from one node to
another. Both operations involve roughly the same number of object mi-
grations. This implies that the delay experienced when moving across
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server nodes is mostly due to having to establish a new connection to an-
other node and log in. Not only must the user be authenticated again,
but it can take a significant amount of time to establish another network
connection between the client and one of the server nodes. Clearly, the
way users are moved from one node to another was not well enough
thought through. It does save the server nodes the burden of having to
forward data between users and other nodes. Sadly, it also introduces
a delay large enough to ruin the illusion of one large persistent world
rather than pieces run on different servers.

This could be solved with a “connection manager” which is always
connected to the user and to all server nodes. This solves both problems.
The connection manager can forward data much more efficiently than
the server nodes whose code runs in DGD’s virtual machine. Mean-
while, the connection to the user stays up when the user moves be-
tween nodes. By keeping connections to all server nodes, no connections
need to be torn down or built up between the connection manager and
server nodes either. This solution should give the highest possible re-
sponsiveness at all times while avoiding unnecessary waste of server
resources. Connection managers can also do some work to offload the
main servers, such as encryption, when that is wanted, and possibly
some pre-processing of user input before it goes to the main servers.

5.4 Thread scheduling

Another requirement with keeping the system responsive is to make
sure that all threads will at least eventually get the chance to run. This
is not enough to make the system truly responsive, however. After a
thread is created, it should be able to complete relatively soon. This
requires a fair scheduling of threads. Scheduling of threads here refers
to how threads are scheduled in the system as a whole, not on each
individual node. A reasonable definition of fair scheduling would be
that threads be allowed to finish in the order they are created. Such
a strict level of fairness does not seem necessary however, nor easy to
do without a costly overhead due to the needed synchronization. It is
with this philosophy that the thread priority system was designed, as
described in previous chapters.

A simple test was performed to see how the scheduling worked in
practice. Two users on separate server nodes would send 100 commands
to the system with no delay in-between. The commands sent short tex-
tual messages to the other user, on the other node. The same test was
also done with three users on three different nodes, with the same re-
sults. In the case with three users, they would send messages in a circle,
from user A to B, B to C and finally C to A.
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To execute the command in question, both the user’s own “user ob-
ject” and that of the message’s recipient, is needed. Textual messages
for a user are delivered by passing them to that user’s user object. These
threads are competing for the same objects, therefore they must be
scheduled in a strict order, they cannot execute in parallel.

In the beginning, one user would send off several messages without
receiving any, because the users did not start at exactly the same time.
After that each user would send two messages at a time before letting
the next user send messages. In this way they would continue taking
turns, executing two commands each, until they had finished their 100
commands.

The priority-based thread system clearly works as intended. No
thread can be blocked by other threads for long. It was observed that
each node was able to run two threads before the necessary objects were
lost to a remote thread with higher priority. This is fine as a strictly fair
one by one scheduling was not a goal. In fact it may be interesting to
go in the other direction. If each node was able to execute a few more
threads each time before losing the necessary objects to another node,
it would reduce object migration overhead. This may be difficult to do
without unwanted side effects, such as decreased responsiveness.

The case used for testing shows that sending a message from one
user to another can be rather inefficient. The recipient’s user object mi-
grates to the sender’s node to receive the message, then goes back to
the first node to actually send the message to the user. Instead, the
message could have been passed between the nodes directly and imme-
diately passed on to the user. However, the way it is done guarantees
that all users see the same events in the same order. This is important
for consistency. However, there may be applications where it makes
sense to relax the demand for consistency. The widely used chat system
Internet Relay Chat (IRC) works this way. When using IRC, two users
do not necessarily see the same messages in the same order. A persis-
tent world with a communication system that allows many users from
different nodes to communicate may have a high number of rollbacks
unless a different method for passing messages can be employed. As
a more general tool, a simple remote procedure call (RPC) mechanism
may be useful, allowing a thread on one node to start a thread on an-
other node. If any results from the call were to be returned, it should
be done through an RPC call in the opposite direction, since a thread
cannot wait for a reply.

The execution of the commands used for testing thread scheduling
are not part of the statistics found in the following sections.
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5.5 Measured results

Tables 5.1, 5.2 and 5.3 hold the test implementation’s recorded statisti-
cal numbers as well as calculated numbers derived from those statistics.
Again it should be emphasized that the numbers were recorded in a per-
sistent world only 40 rooms large, used by 25 users for a short period
of time for no particular reason other than to try the system. It is not
possible to draw any substantial conclusions from this material. Yet, it
may be sufficient for a few interesting observations. Improving this ma-
terial is grist for future work, which will be discussed in the following
chapter. A discussion of the statistical material follows.

5.5.1 Searches

Table 5.1 shows the statistics related to searching. Regular searches
here mean searches using forwarding addresses.

Searches Node1 Node2 Node3 Node4 Total
Broadcast searches 29 97 102 107 335
Regular searches 603 318 338 260 1519
Regular per broadcast 20.8 3.3 3.3 2.4 4.5

Table 5.1: Search Statistics

Nodes 2, 3 and 4 are using broadcasts to locate objects much more
often than node 1. This is probably because node 1 is where all users be-
gin. Node 1 therefore has the advantage of knowing all the user objects
from the beginning whereas the other nodes do not. Perhaps the users
also picked up more objects early than they did later in their travel
across the nodes. Node 4 is the one using broadcasts the most with only
2.4 regular searches per broadcast. It is also the node furthest away
from the beginning. Of course collecting objects from the other nodes
and bringing them back to node 1 also causes broadcasts from node 1
when the objects are first accessed there.

A few broadcasts may also be the result of a user on one node send-
ing a message to a user on another node if the recipient has never vis-
ited the first node and left a forwarding address. This is an example
of an object (the user object) being able to address another object with-
out having a direct object reference to it. A broadcast capability is very
convenient for such cases as there is no way of guaranteeing the pres-
ence of a forwarding address. Though in this case, a central authority,
which object ID is likely known, must be queried to translate the recip-
ient’s user name into an object ID. A forwarding address could also be
acquired through that central authority.
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Had the system been running for a longer period of time without
introducing new objects, the regular per broadcast ratio for searches
would increase greatly. This would happen as nodes acquire forward-
ing addresses for more objects, making broadcasts less often necessary.
Still, not creating new objects dynamically is unrealistic for most per-
sistent world scenarios.

The ratio of regular searches to broadcast searches is not promising.
However, they could be reduced drastically by including a forwarding
address with every object reference passed from one node to another.
This is what Emerald [7, 6] does. As the implementation used rather
anonymous arrays to represent object references, this was not easy to
do as it made it difficult for the system to recognize a reference. It could
perhaps have been done by including some form of signature in every
object reference. This should work even if it is not a clean nor entirely
robust solution. It should be mentioned that, after the implementation
was written, DGD got a new feature called “light weight objects”. Us-
ing light weight objects as references and passing forwarding addresses
along with references could be done in an elegant and efficient manner.

If forwarding addresses would be passed along with every object ref-
erence in a migrating object, broadcasts would only occur when access-
ing a reference that was received by a node in some other way. One
example of this is the central daemon object whose ID is known to all
nodes. It results in one broadcast from each node except the one where
it was created. Another way a node might receive an object reference
is if a programmer typed in an object ID manually, perhaps during de-
bugging. All in all, these are special cases and result in few broadcasts.
The proposed change would almost remove the need for broadcasts. It
would improve performance in systems with many server nodes that
would otherwise have to process many broadcast messages.

5.5.2 Threads

Statistics were also recorded to see how often threads were rolled back.
These numbers can be found in table 5.2.

Threads Node1 Node2 Node3 Node4 Total
Threads executed 13568 2049 2095 1808 19520
Rollbacks 567 387 425 320 1699
Threads per rollback 23.9 5.3 4.9 5.7 11.5

Table 5.2: Thread Statistics

One could say that, systemwide, for every 11.5 threads, a thread is
rolled back once. This is not accurate, however, as some threads are
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rolled back more than once. It would have been interesting to measure
what share of threads is rolled back once, what share is rolled back
twice, and so on. Such numbers were unfortunately not tracked by the
implementation. They may be even more interesting in a production
system because the result can be improved by code changes. By re-
questing more objects at once rather than one by one, where possible,
the number of cascading rollbacks are reduced. As discussed in section
5.2, this fact is easy to ignore, so giving the programmer some feedback
of this form would be helpful.

Most, if not all, of these threads were initiated by user input – one
command corresponding to one thread. Roughly 70% of the threads
were executed on node 1 meaning most user activity took place there.
A similar tendency can probably be observed in most persistent worlds;
users flock to certain places or activities that are more popular than
others. In this case users would talk to eachother in the cabin that
was the starting point. The rest of the world was rather barren. One
could walk around and pick up inanimate objects. Enough to try the
distributed properties of the system, but that was it. Users also tended
to return to the cabin, after having visited the other nodes.

Compared to the number of threads it executed, node 1 also had
much fewer rollbacks than the other nodes. This fact adds to the im-
age of node 1 being the one that saw the most local activity while other
nodes had people enter, take a few objects, and move on. Numbers like
these would hopefully not be seen in a real system. However, it shows
how important it is to spread out popular places or activities on dif-
ferent servers. Otherwise the workload quickly becomes badly skewed
between server nodes.

The amount of rollbacks seems disappointingly high. Considering
that talking would not have caused rollbacks, other activity must have
created a very high number of rollbacks. At first sight, this does not
look good. The setting would have influenced these numbers greatly,
though. Users did things that cause rollbacks because they wanted to
see how the system works. Also, the world is so small that users cannot
move far before they cross a server boundary. Finally, there was nothing
to motivate activity local to one server node, except perhaps for the fact
that everyone started out at the same location. A more realistic scenario
would be completely different. Therefore one could probably expect the
“threads per rollback” statistics seen here to improve greatly.

5.5.3 Efficiency

Perhaps one of the most interesting things to measure was how much
processing power was wasted on rollbacks. DGD has its own unit for
measuring amounts of work performed in its virtual machine, called
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“ticks”. DGD can count ticks while code is running, so this property was
easy to measure. Table 5.3 shows the recorded numbers. “Completion
ticks” are the ticks spent when threads completed successfully, running
from start to finish, shown in thousands (k) of ticks. The number is
the total for all threads that were executed on that node. “Rollback
ticks” are ticks lost to rolling back threads, also shown in thousands.
“Ticks/Completion” is the average number of ticks spent on a complete
thread. “Ticks/Rollback” is the average number of ticks lost in a roll-
back. “Work wasted” is the share of rolled back ticks out of the total
number of ticks (completion ticks + rollback ticks). It should be men-
tioned that only the threads themselves were counted. There is some
additional overhead in storing information about a thread after it has
been rolled back and starting the thread again later. However, this over-
head should not be large enough to make a big difference.

Workload Node1 Node2 Node3 Node4 Total
Completion ticks 93045k 17314k 16390k 13921k 140670k
Rollback ticks 1988k 1437k 1535k 1078k 6038k
Ticks/completion 6858 8450 7823 7700 7206
Ticks/rollback 3506 3713 3612 3369 3554
Work wasted 2.1% 7.7% 8.6% 7.2% 4.1%

Table 5.3: Efficiency–related Statistics

The amount of work wasted is below 10% on all nodes. On average,
4.1% of all the work done is wasted on rollbacks. This is subject to
opinion, but these numbers are probably acceptable for many uses. As
mentioned in the previous system, a realistic scenario would have much
fewer rollbacks. As the size of the persistent world in each node grows
there is likely more activity completely local to each node as opposed to
activity that needs access to remote objects. Fewer rollbacks of course
lead to less wasted work. The effect is clearly visible here. Node 1
wasted 2.1% of its work on rollbacks, which is much less than the other
nodes. Node 1 was also the one were users talked, which is a local
activity. Other nodes saw users often entering from other nodes and
soon leaving again. Those activities cause rollbacks. A larger more
realistic system would likely see much lower shares of wasted work as
long as it does not promote constant travel all around its world. Below
1% seems likely. Of course this is highly dependent on the specifics
of the persistent world and the actual usage patterns exhibited by its
users.

The table shows that the average number of ticks wasted on a roll-
back is roughly half the number of ticks spent on an average complete
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thread (“Ticks/Rollback” is roughly half of “Ticks/Completion”). This
could probably occur in a real system as well. It shows the importance
of keeping the number of rollbacks to a minimum. If every thread was
rolled back once, half of the server’s processing power would be wasted
executing code and then removing its effects directly afterwards. Plac-
ing related objects on the same node is extremely important for high
efficiency. If this is done correctly in a real system, less waste than
shown here is likely to be experienced. That is because a real system
would not have such small areas that lead to frequent crossing of node
boundaries.

What this shows is that the wasteful effect of executing the same
code more than once due to rollbacks can be negligible. Assuming cor-
rect basic design of the persistent world and an intelligent distribution
of its objects between the server nodes, this waste should be minimal.
However, that is not the full picture. There are of course costs associ-
ated with having DGD execute atomic code. While the actual rollbacks
are most expensive, there is always a cost due to having to back up data
modified by atomic code in case a rollback should be necessary. Nor-
mally this overhead is low, but it can be high in some cases. Since this
is highly dependent on the code being executed, it is hard to measure in
a generally useful fashion.

It is difficult to provide exact numbers for the overhead involved with
rollbacks. The overhead will vary from one system to another. The gen-
eral indication seems to be that the overhead is most likely acceptable
in most cases. Still, it is highly system dependent. It is especially im-
portant to keep the number of rollbacks down by grouping objects that
interact with each other on the same node.

Finally table 5.3 shows that node 1 had to carry about two thirds
of the total workload, leaving a very light load on the other nodes in
comparison. Real load balancing was not among the objectives. It does
however make an interesting case for further work.

5.6 Summary

In some ways, more transparency for the programmer could have been
wished for. Most of those changes would have to be applied to DGD
itself, though. On the other hand the system may get too transparent
at one point, making a serious performance penalty easy to overlook.
For actual use, some kind of feedback needs to be implemented. A pro-
grammer or administrator will need to know how well a piece of code
performs in accessing remote objects. At least there should be a warn-
ing when badly behaved code triggers a large number of rollbacks.

To the end user the distributed properties of the system are mostly
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non-obtrusive, keeping commands responsive. The exception is when
crossing server node boundaries. The delay observed by a user when
moving to another node is more than noticeable, but could be reduced by
the use of connection managers. Thread scheduling works as intended,
making sure no thread is kept from executing for long.

The system works as intended, for the most part. Assuming the in-
troduction of connection managers, users would likely not be able to tell
that the server is actually a set of separate server nodes. While there
are some issues a programmer needs to be aware of, the worst com-
plexities of distributed programming are kept out of the way by giving
the programmer an environment that still maintains single-threaded
semantics.

Efficiency seems good as far as this limited test can tell. The impact
of rolling back threads is small. The number of broadcast messages
seems excessive, however. This could easily be rectified by including a
forwarding address when an object reference moves from one node to
another.
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Chapter 6

Future Work

There are issues not covered in this paper that would make interesting
future work. This chapter looks into three major areas: fault tolerance,
load balancing and properties specific to graphical systems. Addition-
ally, it would be very interesting to see how the methods described in
this paper actually perform in a realistic large scale system. The impor-
tance of realistic testing has been extensively discussed in the previous
chapter, so it will not be repeated here.

The following sections discuss fault tolerance and load balancing;
these are issues directly related to the two most important reasons
for using a distributed server. One reason is that redundancy makes
fault tolerance possible, yielding a more stable service. The other rea-
son is sharing the workload between several computers, making a much
larger system possible. Finally, graphical systems are discussed, as they
present slightly different requirements than text-based systems.

6.1 Fault tolerance

The different types of persistent worlds discussed in this paper have
many things in common. One of them is that downtime is highly un-
wanted. Ideally, some of these systems could run for years uninter-
rupted. However, hardware or software faults are bound to occur at
some point. One of the advantages of a distributed system is that there
is redundancy in hardware. If this is taken advantage of by redundancy
in software, the crash of one server node does not have to imply loss of
vital data, nor the service going offline.

One of the weaknesses of the system presented in this paper is its
inability to survive the failure of even a single server node. With two
or three nodes this may not seem like a serious shortcoming. But the
picture changes if one imagines a system using a hundred nodes. Each
additional node is an additional source of failure and adds to the prob-
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ability of a crash. It also seems wrong that one failing node should be
allowed to bring down 99 other nodes that were functioning just fine.
With redundancy it should be possible to avoid loss of data and keep the
system running.

There are many levels of fault tolerance. At one extreme one can
imagine a fault that allows a node to stay operational, but with erratic
behavior. It may not be realistic to cover every type of failure and it
might impose too much overhead to do so. The most fruitful approach
is probably to investigate the most common type of failure: the com-
plete halt of a node. This may happen because a hardware or software
problem has disabled the computer completely or crashed just the DGD
process.

Network faults may also be interesting to consider. A single node
could become isolated. The network could become segmented, splitting
the nodes in two groups that can communicate within the group but not
with any node in the other group. Such network errors are indistin-
guishable from complete node failures. Inability to communicate with a
node could mean either type of failure. Perhaps something better can be
done than what the implementation described in this paper does, which
is a complete system shutdown. Network faults may not be very com-
mon with this type of persistent world server however, as all the nodes
are likely to be on the same local area network (LAN).

By keeping a replica of every object, one can prevent data loss when
a node goes down. That is assuming the replica and original are not
both present at the crashing node and that they are not lost while being
sent across the network. If such an approach is taken, interesting re-
search lies in finding ways to keep replicas updated and, perhaps more
difficult, to keep replicas synchronized in such a way that the recovery
from a failure does not introduce inconsistencies. These things seem
very difficult to do without seriously degrading efficiency and respon-
siveness.

6.2 Load balancing

If one goes to all the trouble of creating a distributed server but ends
up having one node doing all the work, the whole thing seems a little
pointless. This paper has discussed a crude way to share work between
nodes. However, as witnessed by the statistics presented in the previous
chapter, the resulting workload was in no way balanced.

It is possible to achieve some level of load balancing with the im-
plementation described in this paper in the way that an administrator
can change rooms’ home nodes. This is cumbersome, however, and it
is extremely difficult to adapt to sudden changes in the workload. The
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task of load balancing is well suited for automation. There is one ex-
ception, though, as the computer must look at past or current behavior
as a means for adapting for the future. The administrator on the other
hand may know of future events that will place a burden on the system
in a particular way. A proper division between automation and human
control should be found.

6.2.1 Automatic load balancing

There are surely many possible solutions for an automatic load balanc-
ing system. One approach would be to keep the geographically based
distribution scheme and the concept of “home nodes”. The load balanc-
ing system would then change the home node of objects to even out the
load between nodes. Obviously, nodes with a high load need to drop
some objects while nodes with a low load can take more. However, if ob-
jects are jumbled around thoughtlessly, performance will suffer badly.
As discussed in the previous chapter, the number of rollbacks must be
kept low. That means keeping the frequency of remote object accesses
down.

The problem is that two goals need to be achieved. The load must
be balanced while efficiency must be kept high. Objects must move, but
objects that access each other frequently must be kept together. One
can imagine all the objects in the system interconnected in a large web,
where the connections symbolize objects that access each other. The
boundaries between server nodes will place great costs on those connec-
tions in the web that they cross. The optimal solution would be to place
those boundaries across as few connections as possible, choosing the
ones least frequently used. Finding ways to dynamically shift the node
boundaries without destroying performance is certainly a challenge. Fi-
nally, moving areas between server nodes is not so interesting in itself,
it is moving areas with high activity that helps the most to even the
load.

There are also many tuning issues. For instance, how fast the sys-
tem should attempt to adapt to changes in the workload. Quickly ad-
justing to temporary changes makes little sense as it causes the system
to spend resources on load balancing with little gain. Adjusting too
slowly to more permanent changes may cause unecessary periods with
overloaded server nodes. Load balancing may need to be tuned for each
individual system. Perhaps even this tuning can be automated.

6.2.2 Distribution scheme

It would also be interesting to investigate completely different distri-
bution schemes. For a persistent world, a geographical distribution is
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likely a very efficient one, as geographically close objects are likely to
be accessed together. This results in few object accesses across server
nodes, so there is little overhead of that type. On the other hand, it
has a serious shortcoming, as described in 3.7.2 on page 29. Server load
becomes extremely unbalanced as a large crowd of users gather in the
same geographical area. It no longer helps that overhead is kept to a
minimum, when all the work must be done by a single node.

Finding schemes that allow the system to survive such cases of user
behavior is very interesting. The price of a higher overhead during nor-
mal operation may be acceptable if it allows smooth operation during
extreme user behavior.

6.3 Graphical systems

Text systems similar to the test implementation discussed in this pa-
per consist of isolated actions. However, a graphical system would most
likely have continuous visual updates. Perhaps a useful analogy would
be databases and their transactions versus servers that stream audio
and video to their users. One problem occurs if a user can see across
server node boundaries, possibly watching several objects that move
and change continuously. The user may be watching objects on both
nodes, possibly reacting to eachother and moving across the node bound-
ary. It is probably hopeless to migrate these objects back and forth be-
tween nodes, many times per second, to provide users on both nodes
with visual updates. Even if it would work, it is certainly not efficient.

A simple solution employed by some graphical games today is simply
not to allow users to see across nodes (or “zones”). It would probably be
beneficial to make node boundaries completely transparent to users, so
that the experience of one large virtual world is not weakened.

One possible solution might lie in the use of read-only proxy objects.
Nodes that need updates on a certain object could keep a read–only copy
of it as a proxy instead of constantly migrating the actual object back
and forth. Stale information in a proxy object could lead to inconsisten-
cies, though. It is very important that the user sees events in the correct
order, especially events that are dependent upon one another.

Another solution might be to build on the connection manager idea
discussed in the previous chapter. A connection manager sits between
the user and server nodes with a connection to each node. It could sub-
scribe to events — from several servers if necessary. Events, such as
visual updates, from several servers would be combined into a single
stream of events passed on to the user. This way the user gets visual
and audio information from more than one server at the same time. The
problem, again, is synchronization. Users should not see the result of an
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action before the action itself when they take place on separate servers.
Perhaps the timestamps that the threads already have could be used,
tagging each event with the timestamp of the thread that generated it.
It may be necessary to allow other objects in the system to subscribe to
events, not only connection managers. Computer controlled agents may
need the updates, as well as other objects.

There are many other possibilities. The core difficulty lies in pre-
serving consistency by presenting events in correct order while keeping
the system highly responsive and efficient.

6.4 Extensive testing

Last but not least, it would be very interesting to test the implementa-
tion properly. For reasons discussed in the previous chapter the results
were not extensive enough for substantial conclusions.

Real statistics would provide a basis for more interesting observa-
tions and conclusions. The ideal target for examination would be a large
system built for a real purpose, with thousands of active users. Con-
structing such a system is unfortunately likely to be a large task even
for a sizable team. However, it is hard to see how a system designed
for thousands of users can be tested properly without having that many
users actually use the system, and use it the way they would “in the
real world.”

57



58



Bibliography

[1] Bowen Alpern and Fred B. Schneider. Defining liveness. Informa-
tion Processing Letters, 21(4):181–185, October 1985.

[2] Michael R. Blair, Natalya Cohen, David M. LaMacchia, and
Brian K. Zuzga. MIT SchMUSE: Class-Based Remote Delegation
in a Capricious Distributed Environment. In 1995 Lisp Users and
Vendors Conference, page 12. Association of Lisp Users (ALU), Au-
gust 1995.

[3] K. Mani Chandy and Leslie Lamport. Distributed snapshots: De-
termining global states of distributed systems. ACM Transactions
on Computer Systems, 3(1):63–75, February 1985.

[4] Felix A. Croes. DGD. http://www.dworkin.nl/dgd/.

[5] Robert J. Fowler. The complexity of using forwarding addresses
for decentralized object finding. In Proceedings of the Fifth Annual
ACM Symposium on Principles of Distributed Computing, pages
108–120, Calgary, Alberta, Canada, 11–13 August 1986.

[6] Eric Jul. Object mobility in a distributed object-oriented system.
Technical Report 88-12-06, Computer Science Department, Uni-
versity of Washington, 1988.

[7] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black.
Fine-grained mobility in the Emerald system. ACM Transactions
on Computer Systems, 6(1):109–133, February 1988.

[8] Leslie Lamport. Time, clocks, and the ordering of events in a dis-
tributed system. Communications of the ACM, 21(7):558–565, July
1978.

[9] Lars Pensjö. LPmud, a programmable multi-user game, 1991.
(original LPmud documentation).

[10] Alexander Weidt. Dome, a distributed object oriented execution en-
vironment. Technical report, Technical University of Berlin, 1995.
http://autos.cs.tu-berlin.de/~demos/dome.html.

59

http://www.dworkin.nl/dgd/
http://autos.cs.tu-berlin.de/~demos/dome.html

	Cover
	Foreword
	Abstract
	Table of Contents
	1 Introduction
	1.1 Background
	1.2 Objectives
	1.3 Scope and limitations
	1.4 Organization of the paper
	1.5 DGD: Dworkin's Generic Driver
	1.5.1 Communication
	1.5.2 Persistence
	1.5.3 Thread Model
	1.5.4 Single-threaded semantics


	2 Related Work
	2.1 DOME
	2.2 Emerald
	2.2.1 Object naming and object references
	2.2.2 Execution of threads
	2.2.3 Locating objects

	2.3 MIT SchMUSE
	2.4 The distributed snapshot algorithm

	3 Analysis and Design
	3.1 Object naming and object references
	3.2 Locating objects
	3.3 Object migration
	3.4 Attaching and detaching server nodes
	3.5 Execution of threads
	3.5.1 Remote objects
	3.5.2 Locking objects
	3.5.3 Destruction of objects

	3.6 Persistence
	3.7 Distribution scheme
	3.7.1 Geographical division
	3.7.2 Flash crowds
	3.7.3 User connections


	4 Implementation
	4.1 Node interconnection
	4.2 Distributed objects
	4.3 Object references
	4.4 Locating objects
	4.5 Object migration
	4.6 Execution of threads
	4.7 Persistence
	4.8 Test environment

	5 Results and Conclusions
	5.1 The test implementation
	5.2 Programming
	5.3 End user experience
	5.4 Thread scheduling
	5.5 Measured results
	5.5.1 Searches
	5.5.2 Threads
	5.5.3 Efficiency

	5.6 Summary

	6 Future Work
	6.1 Fault tolerance
	6.2 Load balancing
	6.2.1 Automatic load balancing
	6.2.2 Distribution scheme

	6.3 Graphical systems
	6.4 Extensive testing

	Bibliography

